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Abstract. The height of a polynomial with integer coefficients is the largest coefficient
in absolute value. Many papers have been written on the subject of bounding heights of
cyclotomic polynomials. One result, due to H. Maier, gives a best possible upper bound of
nψ(n) for almost all n, where ψ(n) is any function that approaches infinity as n → ∞. We
will discuss the related problem of bounding the maximal height over all polynomial divisors
of xn − 1 and give an analogue of Maier’s result in this scenario.
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1. Introduction and statement of the principal result

Let Φn(x) denote the nth cyclotomic polynomial. The nth cyclotomic polynomial is the
unique monic irreducible polynomial over Q with the primitive nth roots of unity as its roots.
It has integer coefficients. The degree of Φn(x) is ϕ(n), where ϕ is the Euler totient function.

We define the height of a polynomial with integer coefficients to be the largest coefficient
in absolute value. We will denote the height of a polynomial f by H(f).

Much has been studied about H(Φn), which shall henceforth be denoted A(n). In 1946,
P. Erdős stated that logA(n) ≤ n(1+o(1)) log 2/ log logn. He held back its proof because of how
complicated it was. R. C. Vaughan showed in 1975 that this inequality can be reversed for
infinitely many n.

In 1949, P.T. Bateman gave a simple argument that if k is a given positive integer then
A(n) ≤ n2k−1

if n has exactly k distinct prime factors. Let ω(n) denote the number of distinct
prime factors of n. By taking the log of both sides of Bateman’s inequality and using the
fact that the maximal order of ω(n) is logn

log logn
[4, p.355], one can show that Bateman’s

result implies Erdős’ result. Bateman’s upper bound was improved upon by Bateman, C.
Pomerance and Vaughan [1] in 1981, who showed that A(n) ≤ n2k−1/k−1. They also showed

that A(n) ≥ n2k−1/k−1/(5 log n)2k−1
holds for infinitely many n with exactly k distinct odd

prime factors.

Related to these problems are questions concerning the maximal height over all divisors of

xn − 1. It is well-known that xn − 1 =
∏
d|n

Φd(x). Thus, xn − 1 has τ(n) distinct irreducible
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divisors, where τ(n) is the number of divisors of n. Therefore, xn − 1 has 2τ(n) divisors in
Z[x].

Let B(n) = max{H(f) : f(x) | xn − 1, f(x) ∈ Z[x]}. In particular, A(n) ≤ B(n) since
Φn(x) divides xn− 1 and B(n) is the maximum height over all divisors of xn− 1. In general,
much less is known about B(n) than A(n). In 2005, Pomerance and N. Ryan [8] proved
that as n→∞, logB(n) ≤ n(log 3+o(1))/ log logn. They also showed that this inequality can be
reversed for infinitely many n.

In [6], H. Maier found an upper bound for A(n) that holds for most n.

Theorem 1.1 (Maier). Let ψ(n) be a function defined for all positive integers such that
ψ(n) → ∞ as n → ∞. Then A(n) ≤ nψ(n) for almost all n, i.e., for all n except for a set
with asymptotic density 0.

Maier’s upper bound has been shown to be best possible [5]. In this paper, we consider
an upper bound for B(n) that holds for most n.

Theorem 1.2. Let ψ(n) be a function defined for all positive integers such that ψ(n)→∞
as n → ∞. Then B(n) ≤ nτ(n)ψ(n) for almost all n, i.e., for all n except for a set with
asymptotic density 0.

It is not yet known whether this upper bound for B(n) is best possible.

2. Proof strategy for Theorem 1.2

Since xn − 1 =
∏

d|n Φd(x), then B(n) = H
(∏

d∈D Φd(x)
)
, where D is a subset of divisors

of n for which
∏

d∈D Φd(x) has maximal height over all products of distinct cyclotomic
polynomials dividing xn − 1.

In [8], Pomerance and Ryan show that if f1, ..., fk ∈ Z[x] with deg f1 ≤ · · · ≤ deg fk then

H(f1...fk) ≤
∏k−1

i=1 (1+degfi)
∏k

i=1H(fi). Thus, when n > 1,

(2.1) B(n) = H

(∏
d∈D

Φd(x)

)
≤
∏
d∈D

(1 + ϕ(d))
∏
d∈D

A(d) ≤ n#D
∏
d∈D

A(d) ≤ nτ(n)
∏
d|n

A(d).

Let A0(n) := max
d|n

A(d). Then from (2.1), B(n) ≤ nτ(n)A0(n)τ(n), since A(d) ≤ A0(n) for

each d | n. So, if we show that A0(n) ≤ nψ(n) for almost all n, we will have

(2.2) B(n) ≤ nτ(n)A0(n)τ(n) ≤ nτ(n) · nτ(n)ψ(n) = nτ(n)(1+ψ(n))

for almost all n. Since ψ(n) is any function that goes to infinity as n approaches infinity, we
will have proved the theorem.

Thus, we have reduced the proof of Theorem 1.2 to the following proposition, which shall
be proven in section 4.
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Proposition 2.1. We have A0(n) ≤ nψ(n) for almost all n.

3. Key Lemmas

Let ω(n) be defined as in section 1. Write the prime factorization of n as pe11 · · · p
eω(n)

ω(n) ,

where p1 > p2 > · · · > pω(n), ek ≥ 1 for 1 ≤ k ≤ ω(n). Thus, we have functions pk = pk(n)
defined when k ≤ ω(n). If k > ω(n), we let pk(n) = 1.

To prove our proposition, we will show that for most integers, the size of the prime factors
pk decreases rapidly on a logarithmic scale as k increases.

Lemma 3.1. Let 2 < γ < e. The set {n : ω(n) ≥ log logn
log γ

} has density 0.

Proof. Since 2 < γ < e then log γ ∈ (0, 1), so 1 < 1
log γ

. Now, the normal order of ω(n) is

log log n [7, p.111], so for each ε > 0, ω(n) < (1 + ε) log log n must hold, except for a set of
n with asymptotic density 0. In particular, since ε = 1

log γ
− 1 > 0, then ω(n) < 1

log γ
log log n

for almost all n. �

Let µ(n) be the Möbius function. From [6, Lemma 5], we know that if 2 < γ < e then
there is a constant c(γ) > 0 such that for each natural number k <log log x/log γ,

#{n ≤ x : µ(n) 6= 0, log pk > γ−k log x} � xe−c(γ)k.

The following lemma says that we can remove the restriction that µ(n) 6= 0, i.e., we do
not need to assume that n is square-free.

Lemma 3.2. Let 2 < γ < e. Let x > 1. There are positive constants c0(γ), C2 such that for
each natural number k < log log x/ log γ,

#{n ≤ x : log pk > γ−k log x} ≤ C2xe
−c0(γ)k.

Proof. We adopt the same strategy as in [6]. The following is a classical result, due to
Halberstam and Richert [3, Thm 01]: Let f be a non-negative multiplicative function such
that for some numbers A and B and for all numbers y ≥ 0, we have

(3.1)
∑
p≤y

f(p) log p ≤ Ay,
∑
p

∑
ν≥2

f(pν)

pν
log pν ≤ B,

where p runs over primes and ν runs over integers. Then, for all numbers x > 1,

(3.2)
∑
n≤x

f(n) ≤ (A+B + 1)
x

log x

∑
n≤x

f(n)

n
.
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We apply this theorem with f(n) = bω([t,x],n), where w([t, x], n) is the number of distinct

prime factors of n in the interval [t, x], with t = xγ
−k

, b > 1 (b will be specified later). In
order to apply the theorem, we need to check that both conditions in (3.1) are satisfied.

As usual, let θ(y) =
∑

p≤y log p. Since θ(y) ≤ 2y log 2 < 2y [7, p.108] then∑
p≤y

f(p) log p ≤ 2by

for all y. Thus, the first condition is satisfied, with A = 2b.

Next, we show that the second condition is satisfied for a suitable number B, namely
that the double sum converges. Consider the sum

∑
p

∑
ν

log pν

pν
bω([t,y],pν), where p runs over

primes, ν ≥ 2. Since ω counts only distinct prime factors, we have ω([t, y], pν) ≤ 1. So,∑
p

∑
ν≥2

log pν

pν
bω([t,y],pν) ≤ b

∑
p

(
2 log p

p2
+

3 log p

p3
+ · · ·

)
= b

∑
p

(
2

p2
+

3

p3
+ · · ·

)
log p.

It is easy to see that

(3.3)
∑
p

(
2

p2
+

3

p3
+ · · ·

)
log p = 2

∑
p

log p

p(p− 1)

holds, and that the sum in (3.3) is less than 4. Thus, the second condition is satisfied, with
B = 4b.

Therefore, by (3.2), we have

(3.4)
∑
n≤x

bω([t,x],n) ≤ (2b+ 4b+ 1)
x

log x

∑
n≤x

f(n)

n
≤ 7b

x

log x

∑
n≤x

f(n)

n
.

Now,
∑

n≤x
f(n)
n
≤
∏

p≤x

(
1 + f(p)

p
+ f(p2)

p2
+ · · ·

)
, since f is a non-negative multiplicative

function (certainly all prime factors of each n ≤ x are in this product). Taking the log of
both sides, we have

log

(∑
n≤x

f(n)

n

)
≤ log

∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)
= log

∏
p≤x

(
1 + f(p)

(
1

p
+

1

p2
+ · · ·

))
= log

∏
p≤x

(
1 +

f(p)

p− 1

)
=
∑
p≤x

log

(
1 +

f(p)

p− 1

)
.

Thus,

log

(∑
n≤x

f(n)

n

)
≤
∑
p≤x

f(p)

p− 1
=
∑
p<t

1

p− 1
+
∑
t≤p≤x

b

p− 1
,
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since f(p) = 1 when p < t and f(p) = b when t ≤ p ≤ x. By Mertens’ first theorem [7, p.92],∑
p<t

1

p− 1
+
∑
t≤p≤x

b

p− 1
= log log x+ (b− 1)(log log x− log log t) +O(b).

Let α be the constant associated with O(b). After undoing the logarithms, we are left with

(3.5)
∑
n≤x

f(n)

n
≤ C1 log x

(
log x

log t

)b−1

,

where C1 = eαb. Inserting (3.5) into (3.4), we have

(3.6)
∑
n≤x

bω([t,x],n) ≤ 7bC1x

(
log x

log t

)b−1

.

Let C2 = 7bC1. Let

N = #{n ≤ x : ω([t, x], n) >
(1 + ε)(b− 1)

log b
(log log x− log log t)}.

Using (3.6), we have

Nb
(1+ε)(b−1)

log b
(log log x−log log t) ≤

∑
n≤x

bω([t,x],n) ≤ C2x

(
log x

log t

)b−1

.

But

b
(1+ε)(b−1)

log b
(log log x−log log t) = e(1+ε)(b−1)(log log x−log log t) =

(
log x

log t

)(1+ε)(b−1)

.

So

N ≤
C2x( log x

log t
)b−1

( log x
log t

)(1+ε)(b−1)
= C2x

(
log x

log t

)−ε(b−1)

.

In other words,

(3.7) ω([t, x], n) ≤ (1 + ε)(b− 1)

log b
(log log x− log log t)

for all n ≤ x except for a set of cardinality at most C2x( log x
log t

)−ε(b−1).

Now, fix ε > 0, b > 1 such that (1+ε)(b−1)
log b

log γ ≤ 1. Let k < log log x/ log γ. Recall that

t = xγ
−k

. Then, if log pk > γ−k log x, we have

(3.8) ω([t, x], n) ≥ k ≥ (1 + ε)(b− 1)

log b
k log γ.

Since k log γ = log log x− log log t, we have ω([t, x], n) ≥ (1+ε)(b−1)
log b

(log log x− log log t). But

this contradicts (3.7) except for a set of cardinality at most C2x( log x
log t

)−ε(b−1). Thus, the set
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of n ≤ x with log pk > γ−k log x has a cardinality of at most C2x( log x
log t

)−ε(b−1). Since t = xγ
−k

,

we have

#{n ≤ x : log pk > γ−k log x} ≤ C2xe
−kε(b−1) log(γ).

Taking c0(γ) = ε(b− 1) log(γ), we obtain the desired result. �

The following lemma says that, except for a sparse set of integers n, log pk is small when
k is sufficiently large.

Lemma 3.3. Let 2 < γ < e. Let ε > 0 be arbitrary and let k0 = log(ε(1−e−c0(γ))/C2)
−c0(γ)

, where

c0(γ) and C2 are as in Lemma 3.2. Then, for x sufficiently large, the set {n ≤ x : log pk >
γ−k log x for some k ≥ k0} has cardinality at most 2εx.

Proof. Fix ε > 0. Let S = {n ≤ x : log pk > γ−k log x for some k ≥ k0} and let Sk = {n ≤
x : log pk > γ−k log x}. By Lemma 3.2, we have

# S ≤
b log log x

log γ
c∑

k=dk0e

# Sk + #{n : ω(n) >
log log x

log γ
} ≤

∞∑
k=dk0e

C2xe
−c0(γ)k + εx

for sufficiently large x, since {n : ω(n) > log log x
log γ

} has density 0 by Lemma 3.1. But the sum

on the right is a convergent geometric series, so

# S ≤ C2xe
−c0(γ)k0

1− e−c0(γ)
+ εx.

Thus, using the definition of k0,

#{n ≤ x : log pk > γ−k log x for some k ≥ k0} ≤ 2εx.

�

4. Proof of proposition 2.1

Proof. Maier shows in [2] that if ψ(n) is any function defined on all positive integers n such
that ψ(n)→∞ as n→∞ then A(n) ≤ nψ(n) for almost all n. Key to this proof is the fact
that

(4.1) logA(n) ≤ C

ω(n)∑
k=1

2k log pk

for all square-free integers n, where C > 0 is a constant and pk = pk(n) is as above.

We define the radical of n, denoted rad(n), to be the largest square-free divisor of n.
Since Φn(x) = Φrad(n)(x

n/rad(n)), the coefficients of Φn(x) are the same as the coefficients of
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Φrad(n)(x). Thus, A(n) = A(rad(n)). As a result, we can use (4.1) for any positive integer
n, since

logA(n) = logA(rad(n)) ≤ C

ω(n)∑
k=1

2k log pk.

For each d dividing n, let d = p
e1,d
1,d p

e2,d
2,d · · · p

eω(d),d

ω(d),d , where p1,d > p2,d > · · · > pω(d),d and

ek,d ≥ 1 for 1 ≤ k ≤ ω(d). Also, let pk,d = 1 for k > ω(d). Since d | n then the primes
dividing d also divide n. Thus, pk,d ≤ pk for all k, so

ω(d)∑
k=1

2k log pk,d ≤
ω(d)∑
k=1

2k log pk ≤
ω(n)∑
k=1

2k log pk.

Thus, log A(d) ≤ C

ω(n)∑
k=1

2k log pk holds for all n and for all d | n. Since log A0(n) = logA(d)

for some d | n we then have logA0(n) ≤ C

ω(n)∑
k=1

2k log pk.

Let ε > 0 be arbitrary and let k0 be as in Lemma 3.3. Combining the above inequality
with Lemma 3.3, we have

logA0(n) ≤ C

ω(n)∑
k=1

2k log pk = C
∑
k≤bk0c

2k log pk + C

ω(n)∑
k=bk0c+1

2k log pk(4.2)

≤ C
∑
k≤bk0c

2k log pk + C

ω(n)∑
k=bk0c+1

(2/γ)k log x(4.3)

for all n ≤ x except for a set with cardinality ≤ 2εx. Since 2 < γ < e then (2/γ) < 1.

Hence,
∑ω(n)

k=bk0c(2/γ)k is part of a convergent geometric series, so it is bounded above by

some positive constant L that is independent of n.

Now, if
√
x ≤ n ≤ x then 2 log n > log x, so

ω(n)∑
k=bk0c+1

(2/γ)k log x ≤ 2 log n

ω(n)∑
k=bk0c+1

(2/γ)k = 2L log n.
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Then, if n is such that (4.3) holds,

logA0(n) ≤ C
∑
k≤bk0c

2k log pk + 2L log n

≤ 2bk0cC
∑
k≤bk0c

log pk + 2L log n

= 2bk0cC log(
∏

k≤bk0c

pk) + 2L log n

≤ log(n2bk0cC) + log(n2L).

Thus, A0(n) ≤ n2bk0cC · n2L. Then, we have

A0(n) ≤ n2
log(ε(1−e−c0(γ))/C2)

−c0(γ) · n2L ≤ ne
log(ε(1−e−c0(γ))/C2)

−c0(γ) · n2L = n(ε(1−e−c0(γ))/C2)
−1
c0(γ) · n2L.

As mentioned, this holds for all n with
√
x ≤ n ≤ x and for which (4.3) holds. Therefore, for

any ε > 0 there is a constant C3 = ( ε(1−e
−c0(γ))
C2

)
−1
c0(γ) + 2L such that for all sufficiently large

x, every n ≤ x satisfies A0(n) ≤ nC3 , except for at most 2εx +
√
x of them. Since ε > 0 is

arbitrary, this proves Proposition 2.1, which concludes the proof of our main theorem. �
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